viernes, 16 de noviembre de 2012

MOVIMIENTO CIRCULAR UNIFORME Y UNIFORMEMENTE ACELERADO

Movimiento circular uniforme

En física, el movimiento circular uniforme describe el movimiento de un cuerpo atravesando, con rapidez constante, una trayectoria circular.
Aunque la rapidez del objeto es constante, su velocidad no lo es: La velocidad, una magnitud vectorial, tangente a la trayectoria, en cada instante cambia de dirección. Esta circunstancia implica la existencia de una aceleración que, si bien en este caso no varía al módulo de la velocidad, sí varía su dirección.

 

Movimiento circular en mecánica relativista

Si bien la teoría especial de la relatividad permite que una partícula no cargada esté en movimiento circular uniforme, esto en general no resulta posible para una partícula cargada a la que no se le suministra energía adicional. Esto se debe a que una partícula cargada acelerada emite radicación electromagnética perdiendo energía en ese proceso. Eso es precisamente lo que sucede en un sincrotrón que es un tipo de acelerador de partículas (de hecho la radicación de sincrotón emitida por partículas aceleradas en un anillo puede usarse con fines médicos).
Además, en la mecánica relativista el cociente entre la fuerza centrípeta y la aceleración centrípeta, es diferente del cociente entre la fuerza tangencial y la aceleración tangencial. Esto introduce una diferencia fundamental con el caso newtoniano: la aceleración y la fuerza relativistas no son vectores necesariamente paralelos:
\mathbf{F} = \frac{d}{dt}\left( \frac{m\mathbf{v}}{\sqrt{1-\frac{v^2}{c^2}}}\right) =
\frac{m\mathbf{v}}{\left[1-\frac{v^2}{c^2}\right]^{3/2}} \left( \frac{\mathbf{v}}{c^2}\cdot \mathbf{a} \right) + \frac{m\mathbf{a}}{\sqrt{1-\frac{v^2}{c^2}}}
De la relación anterior, se deduce que la fuerza y la aceleración sólo son paralelas en dos casos:
\mathbf{a}\cdot\mathbf{v} = 0, \qquad
\mathbf{a}\cdot\mathbf{v} = \|\mathbf{a}\| \|\mathbf{v}\|
El primer caso se da cuando la aceleración y la velocidad son perpendiculares, cosa que sucede en el movimiento circular uniforme. El segundo caso se da en un movimiento rectilíneo. En cualquier otro tipo de movimiento en general la fuerza y la aceleración no serán permanentemente paralelas.

Movimiento circular en mecánica cuántica

En mecánica cuántica si bien no puede hablarse de trayectoria con precisión pueden ser analizados los estados cuánticos estacionarios de una partículas que debe moverse a lo largo de un anillo. Los estados estacionarios de una partícula en un anillo son el análogo cuántico del movimiento circular uniforme.
Un hecho interesante es que las predicciones para una partícula cargada, es que esta no tiene porqué emitir fotones, de la misma manera que el electrón orbitante alrededor del núcleo no emite energía, por ser el valor resultante de la aceleración vectorial nula, al ser la distribución simétrica respecto al núcleo atómico.

Movimiento circular uniformemente acelerado

El movimiento circular uniformemente acelerado, MCUA, es un caso particular de la velocidad y la aceleración angular, es un movimiento circular cuya aceleración α es constante.
Dada la aceleración angular α podemos obtener el incremento de la velocidad angular ω entre los instantes t0 y t1. La ecuación resultante de la velocidad es:
  • ω (t)=ω00(t1-t0)
siendo α la aceleración, ω0 la velocidad inicial, y (t1-t0) el incremento de tiempo.
Dada la velocidad angular ω en función del tiempo, podemos hallar la posición θ entre los instantes t0 y t1. La ecuación resultante es:
  • Δθ=ω0·Δt +½a0·(Δt)²
siendo a0 la aceleración, ω0 la velocidad inicial, y (t1-t0) el incremento de tiempo.
Apreciese la similitud con las fórmulas del MRUA, movimiento rectilíneo uniformemente acelerado.

VIDEOS: http://www.youtube.com/watch?v=yxlkgJYDdjU
                http://www.youtube.com/watch?v=6USZlovVqIU

No hay comentarios:

Publicar un comentario